Source Apportionment of Speciated Pm2.5 and Non-Parametric Regressions of Pm2.5 and PM(Coarse) Mass Concentrations from Denver and Greeley, Colorado, and Construction and Evaluation of Dichotomous Filter Samplers. (Paperback)


The Denver Aerosol Sources and Health study (DASH) was a long-term study of the relationship between the variability in fine particulate mass and chemical constituents (PM2.5, particulate matter less than 2.5mum) and adverse health effects such as cardio-respiratory illnesses and mortality. Daily filter samples were chemically analyzed for multiple species. We present findings based on 2.8 years of DASH data, from 2003 to 2005. Multilinear Engine 2 (ME-2), a receptor-based source apportionment model was applied to the data to estimate source contributions to PM2.5 mass concentrations. This study relied on two different ME-2 models: (1) a 2-way model that closely reflects PMF-2; and (2) an enhanced model with meteorological data that used additional temporal and meteorological factors.The Coarse Rural Urban Sources and Health study (CRUSH) is a long-term study of the relationship between the variability in coarse particulate mass (PMcoarse, particulate matter between 2.5 and 10mum) and adverse health effects such as cardio-respiratory illnesses, pre-term births, and mortality. Hourly mass concentrations of PMcoarse and fine particulate matter (PM2.5) are measured using tapered element oscillating microbalances (TEOMs) with Filter Dynamics Measurement Systems (FDMS), at two rural and two urban sites. We present findings based on nine months of mass concentration data, including temporal trends, and non-parametric regressions (NPR) results, which were used to characterize the wind speed and wind direction relationships that might point to sources.As part of CRUSH, 1-year coarse and fine mode particulate matter filter sampling network, will allow us to characterize the chemical composition of the particulate matter collected and perform spatial comparisons. This work describes the construction and validation testing of four dichotomous filter samplers for this purpose. The use of dichotomous splitters with an approximate 2.5mum cut point, coupled with a 10mum cut diameter inlet head allows us to collect the separated size fractions that the collocated TEOMs collect continuously. Chemical analysis of the filters will include inorganic ions, organic compounds, EC, OC, and biological analyses.Side by side testing showed the cut diameters were in agreement with each other, and with a well characterized virtual impactor lent to the group by the University of Southern California. Error propagation was performed and uncertainty results were similar to the observed standard deviations.

R2,013

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles20130
Mobicred@R189pm x 12* Mobicred Info
Free Delivery
Delivery AdviceOut of stock

Toggle WishListAdd to wish list
Review this Item

Product Description

The Denver Aerosol Sources and Health study (DASH) was a long-term study of the relationship between the variability in fine particulate mass and chemical constituents (PM2.5, particulate matter less than 2.5mum) and adverse health effects such as cardio-respiratory illnesses and mortality. Daily filter samples were chemically analyzed for multiple species. We present findings based on 2.8 years of DASH data, from 2003 to 2005. Multilinear Engine 2 (ME-2), a receptor-based source apportionment model was applied to the data to estimate source contributions to PM2.5 mass concentrations. This study relied on two different ME-2 models: (1) a 2-way model that closely reflects PMF-2; and (2) an enhanced model with meteorological data that used additional temporal and meteorological factors.The Coarse Rural Urban Sources and Health study (CRUSH) is a long-term study of the relationship between the variability in coarse particulate mass (PMcoarse, particulate matter between 2.5 and 10mum) and adverse health effects such as cardio-respiratory illnesses, pre-term births, and mortality. Hourly mass concentrations of PMcoarse and fine particulate matter (PM2.5) are measured using tapered element oscillating microbalances (TEOMs) with Filter Dynamics Measurement Systems (FDMS), at two rural and two urban sites. We present findings based on nine months of mass concentration data, including temporal trends, and non-parametric regressions (NPR) results, which were used to characterize the wind speed and wind direction relationships that might point to sources.As part of CRUSH, 1-year coarse and fine mode particulate matter filter sampling network, will allow us to characterize the chemical composition of the particulate matter collected and perform spatial comparisons. This work describes the construction and validation testing of four dichotomous filter samplers for this purpose. The use of dichotomous splitters with an approximate 2.5mum cut point, coupled with a 10mum cut diameter inlet head allows us to collect the separated size fractions that the collocated TEOMs collect continuously. Chemical analysis of the filters will include inorganic ions, organic compounds, EC, OC, and biological analyses.Side by side testing showed the cut diameters were in agreement with each other, and with a well characterized virtual impactor lent to the group by the University of Southern California. Error propagation was performed and uncertainty results were similar to the observed standard deviations.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Proquest, Umi Dissertation Publishing

Country of origin

United States

Release date

September 2011

Availability

Supplier out of stock. If you add this item to your wish list we will let you know when it becomes available.

First published

September 2011

Authors

Dimensions

254 x 203 x 17mm (L x W x T)

Format

Paperback - Trade

Pages

250

ISBN-13

978-1-244-58460-0

Barcode

9781244584600

Categories

LSN

1-244-58460-6



Trending On Loot