![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Energy technology & engineering > Nuclear power & engineering
This graduate-level text is intended for any student of physics who requires grounding in the quantum theory of nonrelativistic scattering. The time-dependent approach is emphasized, including the use of time-dependent formalism to define all basic concepts and time-independent theory as a tool for computation. 1983 edition.
Nuclear power is not an option for the future but an absolute necessity. Global threats of climate change and lethal air pollution, killing millions each year, make it clear that nuclear and renewable energy must work together, as non-carbon sources of energy. Fortunately, a new era of growth in this energy source is underway in developing nations, though not yet in the West. Seeing the Light is the first book to clarify these realities and discuss their implications for coming decades. Readers will learn how, why, and where the new nuclear era is happening, what new technologies are involved, and what this means for preventing the proliferation of weapons. This book is the best work available for becoming fully informed about this key subject, for students, the general public, and anyone interested in the future of energy production, and, thus, the future of humanity on planet Earth.
The 2011 disaster at the Fukushima Daiichi Nuclear Power Station led to serious radioactive contamination of the environment. Due to transportation by seasonal wind and ocean currents, these radioactive materials have now been observed in many places in the Northern Hemisphere. This book provides a unique summary of the environmental impact of the unprecedented accident. It covers how radioactive materials were transported through the atmosphere, oceans and land. The techniques used to investigate the deposition and migration processes are also discussed including atmospheric observation, soil mapping, forest and ecosystem investigations, and numerical simulations. With chapters written by international experts, this is a crucial resource for researchers working on the dispersion and impact of radionuclides in the environment. It also provides essential knowledge for nuclear engineers, social scientists and policymakers to help develop suitable mitigation measures to prepare for similar large-scale natural hazards in the future.
The text is designed for junior and senior level Nuclear Engineering students. The third edition of this highly respected text offers the most current and complete introduction to nuclear engineering available. Introduction to Nuclear Engineering has been thoroughly updated with new information on French, Russian, and Japanese nuclear reactors. All units have been revised to reflect current standards. In addition to the numerous end-of-chapter problems, computer exercises have been added.
Despite all the efforts being put into expanding renewable energy sources, large-scale power stations will be essential as part of a reliable energy supply strategy for a longer period. Given that they are low on CO2 emissions, many countries are moving into or expanding nuclear energy to cover their baseload supply. Building structures required for nuclear plants whose protective function means they are classified as safety-related, have to meet particular construction requirements more stringent than those involved in conventional construction. This book gives a comprehensive overview from approval aspects given by nuclear and construction law, with special attention to the interface between plant and construction engineering, to a building structure classification. All life cycle phases are considered, with the primary focus on execution. Accidental actions on structures, the safety concept and design and fastening systems are exposed to a particular treatment. Selected chapters from the German concrete yearbook are now being published in the new English "Beton-Kalender Series" for the benefit of an international audience. Since it was founded in 1906, the Ernst & Sohn "Beton-Kalender" has been supporting developments in reinforced and prestressed concrete. The aim was to publish a yearbook to reflect progress in "ferro-concrete" structures until - as the book's first editor, Fritz von Emperger (1862-1942), expressed it - the "tempestuous development" in this form of construction came to an end. However, the "Beton-Kalender" quickly became the chosen work of reference for civil and structural engineers, and apart from the years 1945-1950 has been published annually ever since.
This two-volume set represents a collection of papers presented at the 18th International Conference on Environmental Degradation of Materials in Nuclear Power Systems - Water Reactors. The purpose of this conference series is to foster an exchange of ideas about problems and their remedies in water-cooled nuclear power plants of today and the future. Contributions cover problems facing nickel-based alloys, stainless steels, pressure vessel and piping steels, zirconium alloys, and other alloys in water environments of relevance. Components covered include pressure boundary components, reactor vessels and internals, steam generators, fuel cladding, irradiated components, fuel storage containers, and balance of plant components and systems.
Whether you are a scientist or a poet, pro-nuclear energy or staunch opponent, conspiracy theorist or pragmatist, James Mahaffey's books have served to open up the world of nuclear science like never before. With clear explanations of some of the most complex scientific endeavors in history, Mahaffey's new book looks back at the atom's wild, secretive past and then toward its potentially bright future. Mahaffey unearths lost reactors on far flung Pacific islands and trees that were exposed to active fission that changed gender or bloomed in the dead of winter. He explains why we have nuclear submarines but not nuclear aircraft and why cold fusion doesn't exist. And who knew that radiation counting was once a fashionable trend? Though parts of the nuclear history might seem like a fiction mash-up, where cowboys somehow got a hold of a reactor, Mahaffey's vivid prose holds the reader in thrall of the infectious energy of scientific curiosity and ingenuity that may one day hold the key to solving our energy crisis or sending us to Mars.
Covering both fundamental and advanced aspects in an accessible way, this textbook begins with an overview of nuclear reactor systems, helping readers to familiarize themselves with the varied designs. Then the readers are introduced to different possibilities for materials applications in the various sections of nuclear energy systems. Materials selection and life prediction methodologies for nuclear reactors are also presented in relation to creep, corrosion and other degradation mechanisms. An appendix compiles useful property data relevant for nuclear reactor applications. Throughout the book, there is a thorough coverage of various materials science principles, such as physical and mechanical metallurgy, defects and diffusion and radiation effects on materials, with serious efforts made to establish structure-property correlations wherever possible. With its emphasis on the latest developments and outstanding problems in the field, this is both a valuable introduction and a ready reference for beginners and experienced practitioners alike.
This book provides a concise and up-to-date summary of the essential thermo-hydraulic analyses and design principles of nuclear reactors for electricity generation. Beginning with the basic nuclear physics, it leads through technical and quantitative analyses to descriptions of both the normal operation of the various modern nuclear reactor designs and the analyses of the possible departures from normal operation. It then describes both the postulated accident scenarios and summaries of the causes for the three major nuclear power generation accidents, Three Mile Island, Chernobyl and Fukushima, as well as the major improvements to reactor safety that grew out of those analyses and accidents.
After Atomic Junction, along the Haatso-Atomic Road there lies the Ghana Atomic Energy Commission, home to Africa's first nuclear programme after independence. Travelling along this road, Abena Dove Osseo-Asare gathers together stories of conflict and compromise on an African nuclear frontier. She speaks with a generation of African scientists who became captivated with 'the atom' and studied in the Soviet Union to make nuclear physics their own. On Pluton Lane and Gamma Avenue, these scientists displaced quiet farming villages in their bid to establish a scientific metropolis, creating an epicentre for Ghana's nuclear physics community. By placing interviews with town leaders, physicists and local entrepreneurs alongside archival records, Osseo-Asare explores the impact of scientific pursuit on areas surrounding the reactor, focusing on how residents came to interpret activities on these 'Atomic Lands'. This combination of historical research, personal and ethnographic observations shows how Ghanaians now stand at a crossroad, where some push to install more reactors, whilst others merely seek pipe-borne water.
This book focuses on Nuclear-Pumped Laser (NPL) technology and provides the reader with a fundamental understanding of NPLs, a review of research in the field and exploration of large scale NPL system design and applications. Early chapters look at the fundamental properties of lasers, nuclear-pumping and nuclear reactions that may be used as drivers for nuclear-pumped lasers. The book goes on to explore the efficient transport of energy from the ionizing radiation to the laser medium and then the operational characteristics of existing nuclear-pumped lasers. Models based on Mathematica, explanations and a tutorial all assist the reader's understanding of this technology. Later chapters consider the integration of the various systems involved in NPLs and the ways in which they can be used, including beyond the military agenda. As readers will discover, there are significant humanitarian applications for high energy/power lasers, such as deflecting asteroids, space propulsion, power transmission and mining. This book will appeal to graduate students and scholars across diverse disciplines, including nuclear engineering, laser physics, quantum electronics, gaseous electronics, optics, photonics, space systems engineering, materials, thermodynamics, chemistry and physics.
The third, revised edition of this popular textbook and reference, which has been translated into Russian and Chinese, expands the comprehensive and balanced coverage of nuclear reactor physics to include recent advances in understanding of this topic. The first part of the book covers basic reactor physics, including, but not limited to nuclear reaction data, neutron diffusion theory, reactor criticality and dynamics, neutron energy distribution, fuel burnup, reactor types and reactor safety. The second part then deals with such physically and mathematically more advanced topics as neutron transport theory, neutron slowing down, resonance absorption, neutron thermalization, perturbation and variational methods, homogenization, nodal and synthesis methods, and space-time neutron dynamics. For ease of reference, the detailed appendices contain nuclear data, useful mathematical formulas, an overview of special functions as well as introductions to matrix algebra and Laplace transforms. With its focus on conveying the in-depth knowledge needed by advanced student and professional nuclear engineers, this text is ideal for use in numerous courses and for self-study by professionals in basic nuclear reactor physics, advanced nuclear reactor physics, neutron transport theory, nuclear reactor dynamics and stability, nuclear reactor fuel cycle physics and other important topics in the field of nuclear reactor physics.
This book looks at Generation IV (GEN IV) nuclear reactor design and the technology known as nuclear micro reactors that is currently under development. Coverage includes the advantages of nuclear micro reactor applications as sources of renewable energy, their use in military applications and Department of Defense requirements, and the nuclear industry's trend toward the design of small and micro reactors. Nuclear micro reactor safety, security issues, and cost concerns are also explored. The book will provide scientists, engineers, and students with valuable guidance on the fundamentals needed to understand the research and development of the next generation of nuclear technologies.
Nuclear power is not an option for the future but an absolute necessity. Global threats of climate change and lethal air pollution, killing millions each year, make it clear that nuclear and renewable energy must work together, as non-carbon sources of energy. Fortunately, a new era of growth in this energy source is underway in developing nations, though not yet in the West. Seeing the Light is the first book to clarify these realities and discuss their implications for coming decades. Readers will learn how, why, and where the new nuclear era is happening, what new technologies are involved, and what this means for preventing the proliferation of weapons. This book is the best work available for becoming fully informed about this key subject, for students, the general public, and anyone interested in the future of energy production, and, thus, the future of humanity on planet Earth.
This book comprises selected proceedings of the ThEC15 conference. The book presents research findings on various facets of thorium energy, including exploration and mining, thermo-physical and chemical properties of fuels, reactor physics, challenges in fuel fabrication, thorium fuel cycles, thermal hydraulics and safety, material challenges, irradiation experiences, and issues and challenges for the design of advanced thorium fueled reactors. Thorium is more abundant than uranium and has the potential to provide energy to the world for centuries if used in a closed fuel cycle. As such, technologies for using thorium for power generation in nuclear reactors are being developed worldwide. Since there is a strong global thrust towards designing nuclear reactors with thorium-based fuel, this book will be of particular interest to nuclear scientists, reactor designers, regulators, academics and policymakers.
'An invaluable contribution to history.' Serhii Plokhy, Evening Standard
This is the 37th edition of Reference Data Series No. 2, which presents the most recent reactor data available to the IAEA. It contains summarized information as of the end of 2016 on power reactors operating, under construction and shut down as well as performance data on reactors operating in the IAEA Member States. The information is collected through designated national correspondents in the Member States and the data are used to maintain the IAEA's Power Reactor Information System (PRIS).
This book explores the physics, technology and applications of particle accelerators. It illustrates the interconnections between applications and basic physical principles, enabling readers to better understand current and upcoming technologies and see beyond the paradigmatic borders of the individual fields. The reader will discover why accelerators are no longer just toys for scientists, but have also become modern and efficient nuclear workhorses. The book starts with an introduction to the relevant technologies and radiation safety aspects of accelerating electrons and ions from several keV to roughly 250 MeV. It subsequently describes the physics behind the interactions of these particle beams with matter. Mathematical descriptions and state-of-the-art computer models of energy-loss and nuclear interactions between the particle beams and targets round out the physics coverage. On this basis, the book then presents the most important accelerator applications in science, medicine, and industry, explaining and comparing more than 20 major application fields, encompassing semiconductors, cancer treatment, and space exploration. Despite the disparate fields involved, this book demonstrates how the same essential technology and physics connects all of these applications.
The main outcomes of RILEM TC-226-CNM are summarized in this book. Key input was provided by researchers from countries that are main contributors in the R&D, design, construction, operation, and regulation of waste nuclear reinforced concrete facilities. Nuclear power plants and many of the facilities and structures used for the management of radioactive waste materials generated by the fuel cycle use concrete in their construction. RILEM TC 226 CNM covered several areas including functional and performance requirements for concrete structures; degradation processes; phenomenological modelling, field experiences, tests approaches, instrumentation and monitoring methods dedicated to performance assessments; service-life models; aging Management of Nuclear Power Plants, repair techniques; codes and standards specific to radioactive waste facilities.
The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This revised and updated 4th edition explores the challenges that faced the scientists and engineers of the Manhattan Project. It gives a clear introduction to fission weapons at the level of an upper-year undergraduate physics student by examining the details of nuclear reactions, their energy release, analytic and numerical models of the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design. An extensive list of references and a number of exercises for self-study are included. Revisions to this fourth edition include many upgrades and new sections. Improvements are made to, among other things, the analysis of the physics of the fission barrier, the time-dependent simulation of the explosion of a nuclear weapon, and the discussion of tamped bomb cores. New sections cover, for example, composite bomb cores, approximate methods for various of the calculations presented, and the physics of the polonium-beryllium "neutron initiators" used to trigger the bombs. The author delivers in this book an unparalleled, clear and comprehensive treatment of the physics behind the Manhattan project.
This book describes the fast reactor (FR), a type of new reactor for nuclear plants, currently under research and development. The book targets young researchers and engineers who will be charged with commercializing this new type of reactor to lead to the development of new components and systems for improved plant reliability and economy. This volume also helps readers to understand the methods of integrating the power plant in its entirety, from the reactor core to all of the various systems and components, and teaches the way of thinking that forms the background of these methods. This background includes the various organizational and management issues that are encountered as projects move forward and will be explored in great detail based on actual design and construction experience with Japan's prototype FR, Monju.
This book reviews the current state of understanding concerning edge plasma, which bridges hot fusion plasma, with a temperature of roughly one million degrees Kelvin with plasma-facing materials, which have melting points of only a few thousand degrees Kelvin. In a fact, edge plasma is one of the keys to solution for harnessing fusion energy in magnetic fusion devices. The physics governing the processes at work in the edge plasma involves classical and anomalous transport of multispecies plasma, neutral gas dynamics, atomic physics effects, radiation transport, plasma-material interactions, and even the transport of plasma species within the plasma-facing materials. The book starts with simple physical models, then moves on to rigorous theoretical considerations and state-of-the-art simulation tools that are capable of capturing the most important features of the edge plasma phenomena. The authors compare the conclusions arising from the theoretical and computational analysis with the available experimental data. They also discuss the remaining gaps in their models and make projections for phenomena related to edge plasma in magnetic fusion reactors.
In this exploration of the most innovative and iconoclastic modernist fiction, James J. Miracky studies the ways in which cultural forces and discourses of gender inflect the practice and theory of four British novelists: Virginia Woolf, E. M. Forster, May Sinclair, and D. H. Lawrence. Building on analyses of gender theory and formal innovation in Virginia Woolf's novels, this book examines Forster's queered use of fantasy, Sinclair's representation of manly genius in both male and female streams of consciousness, and Lawrence's quest for the novel of phallic consciousness. Reading each author's fiction alongside his or her theoretical writing, Miracky provides four diverse examples of how literary modernism wrestled with the gender crisis of the early twentieth century.
On March 11,2011, Japan experienced the largest earthquake in its history, causing massive property damage. This book summarizes and critically analyzes the natural events and human shortcomings responsible for the failure of the Fukushima reactors during the first year following the accident, and governmental and civilian responses to the emergency. It covers the plant's safety history, the tsunami and earthquake, and the implications of the events on the nuclear reactor industry. |
![]() ![]() You may like...
Nuclear Power Plants: Innovative…
Yang Xu, Hong Xia, …
Hardcover
Uranium Deposits of the World - Europe
Franz J Dahlkamp
Hardcover
Integrated Circuit Design for Radiation…
Stephen J. Gaul, Nicolaas van Vonno, …
Hardcover
R2,986
Discovery Miles 29 860
Earthquake Engineering for Nuclear…
Masanori Hamada, Michiya Kuno
Hardcover
Application of Compact Heat Exchangers…
Bahman Zohuri
Hardcover
|