A New Construction of Homogeneous Quaternionic Manifolds and Related Geometric Structures (Paperback)


Let $V = {\mathbb R}^{p,q}$ be the pseudo-Euclidean vector space of signature $(p,q)$, $p\ge 3$ and $W$ a module over the even Clifford algebra $C\!\ell^0 (V)$. A homogeneous quaternionic manifold $(M,Q)$ is constructed for any $\mathfrak {spin} (V)$-equivariant linear map $\Pi: \wedge^2 W\rightarrow V$. If the skew symmetric vector valued bilinear form $\Pi$ is nondegenerate then $(M,Q)$ is endowed with a canonical pseudo-Riemannian metric $g$ such that $(M,Q,g)$ is a homogeneous quatemionic pseudo-Kahler manifold. If the metric $g$ is positive definite, i.e. a Riemannian metric, then the quaternionic Kahler manifold $(M,Q,g)$ is shown to admit a simply transitive solvable group of automorphisms.In this special case ($p=3$) we recover all the known homogeneous quaternionic Kahler manifolds of negative scalar curvature (Alekseevsky spaces) in a unified and direct way. If $p>3$ then $M$ does not admit any transitive action of a solvable Lie group and we obtain new families of quatermionic pseudo-Kahler manifolds. Then it is shown that for $q = 0$ the noncompact quaternionic manifold $(M,Q)$ can be endowed with a Riemannian metric $h$ such that $(M,Q,h)$ is a homogeneous quaternionic Hermitian manifold, which does not admit any transitive solvable group of isometries if $p>3$. The twistor bundle $Z\rightarrow M$ and the canonical ${\mathrm SO} (3)$-principal bundle $S \rightarrow M$ associated to the quaternionic manifold $(M,Q)$ are shown to be homogeneous under the automorphism group of the base.More specifically, the twistor space is a homogeneous complex manifold carrying an invariant holomorphic distribution $\mathcal D$ of complex codimension one, which is a complex contact structure if and only if $\Pi$ is nondegenerate. Moreover, an equivariant open holomorphic immersion $Z\rightarrow\bar{Z}$ into a homogeneous complex manifold $\bar{Z}$ of complex algebraic group is constructed. Finally, the construction is shown to have a natural mirror in the category of supermanifolds. In fact, for any $\mathfrak {spin} (V)$-equivariant linear map $\Pi: \vee^2 W \rightarrow V$ a homogeneous quaternionic supermanifold $(M,Q)$ is constructed and, moreover, a homogeneous quaternionic pseudo-Kahler supermanifold $(M,Q,g)$ if the symmetric vector valued bilinear form $\Pi$ is nondegenerate.

R1,314
List Price R1,436
Save R122 8%

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles13140
Mobicred@R123pm x 12* Mobicred Info
Free Delivery
Delivery AdviceOut of stock

Toggle WishListAdd to wish list
Review this Item

Product Description

Let $V = {\mathbb R}^{p,q}$ be the pseudo-Euclidean vector space of signature $(p,q)$, $p\ge 3$ and $W$ a module over the even Clifford algebra $C\!\ell^0 (V)$. A homogeneous quaternionic manifold $(M,Q)$ is constructed for any $\mathfrak {spin} (V)$-equivariant linear map $\Pi: \wedge^2 W\rightarrow V$. If the skew symmetric vector valued bilinear form $\Pi$ is nondegenerate then $(M,Q)$ is endowed with a canonical pseudo-Riemannian metric $g$ such that $(M,Q,g)$ is a homogeneous quatemionic pseudo-Kahler manifold. If the metric $g$ is positive definite, i.e. a Riemannian metric, then the quaternionic Kahler manifold $(M,Q,g)$ is shown to admit a simply transitive solvable group of automorphisms.In this special case ($p=3$) we recover all the known homogeneous quaternionic Kahler manifolds of negative scalar curvature (Alekseevsky spaces) in a unified and direct way. If $p>3$ then $M$ does not admit any transitive action of a solvable Lie group and we obtain new families of quatermionic pseudo-Kahler manifolds. Then it is shown that for $q = 0$ the noncompact quaternionic manifold $(M,Q)$ can be endowed with a Riemannian metric $h$ such that $(M,Q,h)$ is a homogeneous quaternionic Hermitian manifold, which does not admit any transitive solvable group of isometries if $p>3$. The twistor bundle $Z\rightarrow M$ and the canonical ${\mathrm SO} (3)$-principal bundle $S \rightarrow M$ associated to the quaternionic manifold $(M,Q)$ are shown to be homogeneous under the automorphism group of the base.More specifically, the twistor space is a homogeneous complex manifold carrying an invariant holomorphic distribution $\mathcal D$ of complex codimension one, which is a complex contact structure if and only if $\Pi$ is nondegenerate. Moreover, an equivariant open holomorphic immersion $Z\rightarrow\bar{Z}$ into a homogeneous complex manifold $\bar{Z}$ of complex algebraic group is constructed. Finally, the construction is shown to have a natural mirror in the category of supermanifolds. In fact, for any $\mathfrak {spin} (V)$-equivariant linear map $\Pi: \vee^2 W \rightarrow V$ a homogeneous quaternionic supermanifold $(M,Q)$ is constructed and, moreover, a homogeneous quaternionic pseudo-Kahler supermanifold $(M,Q,g)$ if the symmetric vector valued bilinear form $\Pi$ is nondegenerate.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

American Mathematical Society

Country of origin

United States

Series

Memoirs of the American Mathematical Society

Release date

August 2000

Availability

Supplier out of stock. If you add this item to your wish list we will let you know when it becomes available.

Dimensions

234 x 156mm (L x W)

Format

Paperback

Pages

63

ISBN-13

978-0-8218-2111-4

Barcode

9780821821114

Categories

LSN

0-8218-2111-3



Trending On Loot