Stability and Chaos in Celestial Mechanics (Paperback, 2010 ed.)


The last decades have marked the beginning of a new era in Celestial Mech- ics. The challenges came from several di?erent directions. The stability theory of nearly-integrable systems (a class of problems which includes many models of - lestial Mechanics) pro?ted from the breakthrough represented by the Kolmogorov- Arnold-Moser theory, which also provides tools for determining explicitly the - rameter values allowing for stability. A con?nement of the actions for exponential times was guaranteed by Nekhoroshev's theorem, which gives much information about the geography of the resonances. Performing ever-faster computer simu- tionsallowedustohavedeeperinsightsintomanyquestionsofDynamicalSystems, most notably chaos theory. In this context several techniques have been developed to distinguish between ordered and chaotic behaviors. Modern tools for computing spacecraft trajectories made possible the realization of many space missions, es- cially the interplanetary tours, which gave a new shape to the solar system with a lot of new satellites and small bodies. Finally, the improvement of observational techniques allowed us to make two revolutions in the sky: the solar system does not end with Pluto, but it extends to the Kuiper belt, and the solar system is not unique, but the universe has plenty of extrasolar planetary systems. Cookingalltheseingredientstogetherwiththeclassicaltheoriesdevelopedfrom the 17th to the 19th centuries, one obtains themodern Celestial Mechanics.

R3,632

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles36320
Mobicred@R340pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

The last decades have marked the beginning of a new era in Celestial Mech- ics. The challenges came from several di?erent directions. The stability theory of nearly-integrable systems (a class of problems which includes many models of - lestial Mechanics) pro?ted from the breakthrough represented by the Kolmogorov- Arnold-Moser theory, which also provides tools for determining explicitly the - rameter values allowing for stability. A con?nement of the actions for exponential times was guaranteed by Nekhoroshev's theorem, which gives much information about the geography of the resonances. Performing ever-faster computer simu- tionsallowedustohavedeeperinsightsintomanyquestionsofDynamicalSystems, most notably chaos theory. In this context several techniques have been developed to distinguish between ordered and chaotic behaviors. Modern tools for computing spacecraft trajectories made possible the realization of many space missions, es- cially the interplanetary tours, which gave a new shape to the solar system with a lot of new satellites and small bodies. Finally, the improvement of observational techniques allowed us to make two revolutions in the sky: the solar system does not end with Pluto, but it extends to the Kuiper belt, and the solar system is not unique, but the universe has plenty of extrasolar planetary systems. Cookingalltheseingredientstogetherwiththeclassicaltheoriesdevelopedfrom the 17th to the 19th centuries, one obtains themodern Celestial Mechanics.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer-Verlag

Country of origin

Germany

Series

Astronomy and Planetary Sciences

Release date

March 2012

Availability

Expected to ship within 10 - 15 working days

First published

2010

Authors

Dimensions

240 x 170 x 14mm (L x W x T)

Format

Paperback

Pages

264

Edition

2010 ed.

ISBN-13

978-3-642-26156-5

Barcode

9783642261565

Categories

LSN

3-642-26156-6



Trending On Loot