Analytic Combinatorics for Multiple Object Tracking (Hardcover, 1st ed. 2021)

, ,
The book shows that the analytic combinatorics (AC) method encodes the combinatorial problems of multiple object tracking-without information loss-into the derivatives of a generating function (GF). The book lays out an easy-to-follow path from theory to practice and includes salient AC application examples. Since GFs are not widely utilized amongst the tracking community, the book takes the reader from the basics of the subject to applications of theory starting from the simplest problem of single object tracking, and advancing chapter by chapter to more challenging multi-object tracking problems. Many established tracking filters (e.g., Bayes-Markov, PDA, JPDA, IPDA, JIPDA, CPHD, PHD, multi-Bernoulli, MBM, LMBM, and MHT) are derived in this manner with simplicity, economy, and considerable clarity. The AC method gives significant and fresh insights into the modeling assumptions of these filters and, thereby, also shows the potential utility of various approximation methods that are well established techniques in applied mathematics and physics, but are new to tracking. These unexplored possibilities are reviewed in the final chapter of the book.

R3,523

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles35230
Mobicred@R330pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

The book shows that the analytic combinatorics (AC) method encodes the combinatorial problems of multiple object tracking-without information loss-into the derivatives of a generating function (GF). The book lays out an easy-to-follow path from theory to practice and includes salient AC application examples. Since GFs are not widely utilized amongst the tracking community, the book takes the reader from the basics of the subject to applications of theory starting from the simplest problem of single object tracking, and advancing chapter by chapter to more challenging multi-object tracking problems. Many established tracking filters (e.g., Bayes-Markov, PDA, JPDA, IPDA, JIPDA, CPHD, PHD, multi-Bernoulli, MBM, LMBM, and MHT) are derived in this manner with simplicity, economy, and considerable clarity. The AC method gives significant and fresh insights into the modeling assumptions of these filters and, thereby, also shows the potential utility of various approximation methods that are well established techniques in applied mathematics and physics, but are new to tracking. These unexplored possibilities are reviewed in the final chapter of the book.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer Nature Switzerland AG

Country of origin

Switzerland

Release date

December 2020

Availability

Expected to ship within 10 - 15 working days

First published

2021

Authors

, ,

Dimensions

235 x 155mm (L x W)

Format

Hardcover

Pages

221

Edition

1st ed. 2021

ISBN-13

978-3-03-061190-3

Barcode

9783030611903

Categories

LSN

3-03-061190-6



Year-End Exam Prep For School