Fractals in Science - An Introductory Course (Paperback, Softcover reprint of the original 1st ed. 1994)

,
Nature is full of spidery patterns: lightning bolts, coastlines, nerve cells, termite tunnels, bacteria cultures, root systems, forest fires, soil cracking, river deltas, galactic distributions, mountain ranges, tidal patterns, cloud shapes, sequencing of nucleotides in DNA, cauliflower, broccoli, lungs, kidneys, the scraggly nerve cells that carry signals to and from your brain, the branching arteries and veins that make up your circulatory system. These and other similar patterns in nature are called natural fractals or random fractals. This chapter contains activities that describe random fractals. There are two kinds of fractals: mathematical fractals and natural (or random) fractals. A mathematical fractal can be described by a mathematical formula. Given this formula, the resulting structure is always identically the same (though it may be colored in different ways). In contrast, natural fractals never repeat themselves; each one is unique, different from all others. This is because these processes are frequently equivalent to coin-flipping, plus a few simple rules. Nature is full of random fractals. In this book you will explore a few of the many random fractals in Nature. Branching, scraggly nerve cells are important to life (one of the patterns on the preceding pages). We cannot live without them. How do we describe a nerve cell? How do we classify different nerve cells? Each individual nerve cell is special, unique, different from every other nerve cell. And yet our eye sees that nerve cells are similar to one another.

R1,571

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles15710
Mobicred@R147pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Nature is full of spidery patterns: lightning bolts, coastlines, nerve cells, termite tunnels, bacteria cultures, root systems, forest fires, soil cracking, river deltas, galactic distributions, mountain ranges, tidal patterns, cloud shapes, sequencing of nucleotides in DNA, cauliflower, broccoli, lungs, kidneys, the scraggly nerve cells that carry signals to and from your brain, the branching arteries and veins that make up your circulatory system. These and other similar patterns in nature are called natural fractals or random fractals. This chapter contains activities that describe random fractals. There are two kinds of fractals: mathematical fractals and natural (or random) fractals. A mathematical fractal can be described by a mathematical formula. Given this formula, the resulting structure is always identically the same (though it may be colored in different ways). In contrast, natural fractals never repeat themselves; each one is unique, different from all others. This is because these processes are frequently equivalent to coin-flipping, plus a few simple rules. Nature is full of random fractals. In this book you will explore a few of the many random fractals in Nature. Branching, scraggly nerve cells are important to life (one of the patterns on the preceding pages). We cannot live without them. How do we describe a nerve cell? How do we classify different nerve cells? Each individual nerve cell is special, unique, different from every other nerve cell. And yet our eye sees that nerve cells are similar to one another.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer-Verlag New York

Country of origin

United States

Release date

August 1994

Availability

Expected to ship within 10 - 15 working days

First published

1994

Authors

,

Dimensions

254 x 203 x 17mm (L x W x T)

Format

Paperback

Pages

320

Edition

Softcover reprint of the original 1st ed. 1994

ISBN-13

978-0-387-94361-9

Barcode

9780387943619

Categories

LSN

0-387-94361-7



Trending On Loot