Stochastic Approximation and Recursive Algorithms and Applications (Hardcover, 2nd ed. 2003)

,
The book presents a thorough development of the modern theory of stochastic approximation or recursive stochastic algorithms for both constrained and unconstrained problems. There is a complete development of both probability one and weak convergence methods for very general noise processes. The proofs of convergence use the ODE method, the most powerful to date, with which the asymptotic behavior is characterized by the limit behavior of a mean ODE. The assumptions and proof methods are designed to cover the needs of recent applications. The development proceeds from simple to complex problems, allowing the underlying ideas to be more easily understood. Rate of convergence, iterate averaging, high-dimensional problems, stability-ODE methods, two time scale, asynchronous and decentralized algorithms, general correlated and state-dependent noise, perturbed test function methods, and large devitations methods, are covered. Many motivational examples from learning theory, ergodic cost problems for discrete event systems, wireless communications, adaptive control, signal processing, and elsewhere, illustrate the application of the theory. This second edition is a thorough revision, although the main features and the structure remain unchanged. It contains many additional applications and results, and more detailed discussion. Harold J. Kushner is a University Professor and Professor of Applied Mathematics at Brown University. He has written numerous books and articles on virtually all aspects of stochastic systems theory, and has received various awards including the IEEE Control Systems Field Award.

R5,029

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles50290
Mobicred@R471pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

The book presents a thorough development of the modern theory of stochastic approximation or recursive stochastic algorithms for both constrained and unconstrained problems. There is a complete development of both probability one and weak convergence methods for very general noise processes. The proofs of convergence use the ODE method, the most powerful to date, with which the asymptotic behavior is characterized by the limit behavior of a mean ODE. The assumptions and proof methods are designed to cover the needs of recent applications. The development proceeds from simple to complex problems, allowing the underlying ideas to be more easily understood. Rate of convergence, iterate averaging, high-dimensional problems, stability-ODE methods, two time scale, asynchronous and decentralized algorithms, general correlated and state-dependent noise, perturbed test function methods, and large devitations methods, are covered. Many motivational examples from learning theory, ergodic cost problems for discrete event systems, wireless communications, adaptive control, signal processing, and elsewhere, illustrate the application of the theory. This second edition is a thorough revision, although the main features and the structure remain unchanged. It contains many additional applications and results, and more detailed discussion. Harold J. Kushner is a University Professor and Professor of Applied Mathematics at Brown University. He has written numerous books and articles on virtually all aspects of stochastic systems theory, and has received various awards including the IEEE Control Systems Field Award.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer-Verlag New York

Country of origin

United States

Series

Stochastic Modelling and Applied Probability, 35

Release date

July 2003

Availability

Expected to ship within 12 - 17 working days

First published

2003

Authors

,

Dimensions

235 x 155 x 26mm (L x W x T)

Format

Hardcover

Pages

474

Edition

2nd ed. 2003

ISBN-13

978-0-387-00894-3

Barcode

9780387008943

Categories

LSN

0-387-00894-2



Trending On Loot