Toward the Static Detection of Deadlock in Java Software (Paperback)


Concurrency is the source of many real-world software reliability and security problems. Concurrency defects are difficult to detect because they defy conventional software testing techniques due to their non-local and non-deterministic nature. We focus on one important aspect of this problem: static detection of the possibility of deadlock--a situation in which two or more processes are prevented from continuing while each waits for resources to be freed by the continuation of the other. This thesis proposes a flow-insensitive interprocedural static analysis that detects the possibility that a program can deadlock at runtime. Our analysis proceeds in two steps. The first extracts the "real" call graph decorated with acquired locks from the target program.

R1,393

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles13930
Mobicred@R131pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Concurrency is the source of many real-world software reliability and security problems. Concurrency defects are difficult to detect because they defy conventional software testing techniques due to their non-local and non-deterministic nature. We focus on one important aspect of this problem: static detection of the possibility of deadlock--a situation in which two or more processes are prevented from continuing while each waits for resources to be freed by the continuation of the other. This thesis proposes a flow-insensitive interprocedural static analysis that detects the possibility that a program can deadlock at runtime. Our analysis proceeds in two steps. The first extracts the "real" call graph decorated with acquired locks from the target program.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Biblioscholar

Country of origin

United States

Release date

November 2012

Availability

Expected to ship within 10 - 15 working days

First published

November 2012

Authors

Dimensions

246 x 189 x 7mm (L x W x T)

Format

Paperback - Trade

Pages

122

ISBN-13

978-1-288-33520-6

Barcode

9781288335206

Categories

LSN

1-288-33520-2



Trending On Loot