Characterization of Compressive Creep Behavior of Oxide/Oxide Composite with Monazite Coating at Elevated Temperature (Paperback)


Ceramic-matrix composites (CMCs), capable of maintaining excellent strength and fracture toughness at high temperatures are prime candidate materials for aerospace turbine engine applications. In these applications, CMCs will be subjected to mechanical loading in complex environments. Before ceramic matrix composites can be used in high-temperature aerospace engine applications, their structural integrity and long-term environmental durability must be assured. This research investigated compressive stress-strain and compressive creep behavior of the N610/M/A at 900 and 1100 -C. The composite consists of a porous alumina matrix reinforced with NextelTM610 fibers coated with monazite in a symmetric cross-ply (0-/90-/0-/90-)s orientation. The addition of monazite coating resulted in loss of compressive strength at both 900 and 1100 -C. Compressive creep behavior was examined at 900 and 1100-C for creep stresses ranging from 50 to 95 MPa. At 900 -C both monazite containing and control specimens produced creep strains d 0.05%. Conversely, at 1100 -C creep strains approaced 9%. Creep strain rates were on the order of 10-7 s-1. Creep run-out, defined as 100 h at creep stress, was achieved in all tests. Composite microstructure, as well as damage and failure mechanisms were investigated. Furthermore, effects of variation in microstructure on mechanical response were examined. While differences in processing and consequently the composite microstructure did not have a significant effect on tensile response of the CMC, effects on the compressive properties were dramatic.

R1,390

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles13900
Mobicred@R130pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Ceramic-matrix composites (CMCs), capable of maintaining excellent strength and fracture toughness at high temperatures are prime candidate materials for aerospace turbine engine applications. In these applications, CMCs will be subjected to mechanical loading in complex environments. Before ceramic matrix composites can be used in high-temperature aerospace engine applications, their structural integrity and long-term environmental durability must be assured. This research investigated compressive stress-strain and compressive creep behavior of the N610/M/A at 900 and 1100 -C. The composite consists of a porous alumina matrix reinforced with NextelTM610 fibers coated with monazite in a symmetric cross-ply (0-/90-/0-/90-)s orientation. The addition of monazite coating resulted in loss of compressive strength at both 900 and 1100 -C. Compressive creep behavior was examined at 900 and 1100-C for creep stresses ranging from 50 to 95 MPa. At 900 -C both monazite containing and control specimens produced creep strains d 0.05%. Conversely, at 1100 -C creep strains approaced 9%. Creep strain rates were on the order of 10-7 s-1. Creep run-out, defined as 100 h at creep stress, was achieved in all tests. Composite microstructure, as well as damage and failure mechanisms were investigated. Furthermore, effects of variation in microstructure on mechanical response were examined. While differences in processing and consequently the composite microstructure did not have a significant effect on tensile response of the CMC, effects on the compressive properties were dramatic.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Biblioscholar

Country of origin

United States

Release date

December 2012

Availability

Expected to ship within 10 - 15 working days

First published

December 2012

Authors

Dimensions

246 x 189 x 6mm (L x W x T)

Format

Paperback - Trade

Pages

114

ISBN-13

978-1-288-40957-0

Barcode

9781288409570

Categories

LSN

1-288-40957-5



Trending On Loot