Broadband Pumping Effects on the Diode Pumped Alkali Laser (Paperback)


This research seeks to gain greater insight on the mechanics of The Diode Pumped Alkali Laser through analytic modeling techniques. This work is an extension to a previous model developed by Dr. Gordon Hager, and focuses on the addition of pump-beam bandwidth. Specifically, it seeks to determine the effect that broadband pumping has on laser performance. The model incorporates all the fundamental parameters within the laser system, including alkali concentrations, collision partner concentrations, pump bandwidth, length and temperature of gain medium, transmission, and reflectivity. Baseline operating conditions set Rubidium (Rb) concentrations ranging from 10 - 10 atoms/cm, corresponding to operating temperatures ranging from 50 - 150 C. Ethane or Methane concentrations are varied corresponding to partial pressures from 100 - 500 Torr. The system is evaluated for incident beam intensity ranging from 0 - 30000 W/cm, for both lasing and non-lasing system analysis. Output laser beam intensities scale well with input beam intensity and the model predicts optical to optical efficiencies of over 70%.

R1,418

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles14180
Mobicred@R133pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

This research seeks to gain greater insight on the mechanics of The Diode Pumped Alkali Laser through analytic modeling techniques. This work is an extension to a previous model developed by Dr. Gordon Hager, and focuses on the addition of pump-beam bandwidth. Specifically, it seeks to determine the effect that broadband pumping has on laser performance. The model incorporates all the fundamental parameters within the laser system, including alkali concentrations, collision partner concentrations, pump bandwidth, length and temperature of gain medium, transmission, and reflectivity. Baseline operating conditions set Rubidium (Rb) concentrations ranging from 10 - 10 atoms/cm, corresponding to operating temperatures ranging from 50 - 150 C. Ethane or Methane concentrations are varied corresponding to partial pressures from 100 - 500 Torr. The system is evaluated for incident beam intensity ranging from 0 - 30000 W/cm, for both lasing and non-lasing system analysis. Output laser beam intensities scale well with input beam intensity and the model predicts optical to optical efficiencies of over 70%.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Biblioscholar

Country of origin

United States

Release date

October 2012

Availability

Expected to ship within 10 - 15 working days

First published

October 2012

Authors

Dimensions

246 x 189 x 5mm (L x W x T)

Format

Paperback - Trade

Pages

98

ISBN-13

978-1-286-86203-2

Barcode

9781286862032

Categories

LSN

1-286-86203-5



Trending On Loot