Extracorporeal Focused Ultrasound Therapy (Paperback)


A high intensity focused ultrasound (HIFU) treatment has a very complex therapy planning structure. In this thesis we introduce a workflow on the basis of a decomposition of the therapy plan into controllable but coupled subproblems. Under certain assumptions, including the decoupling of these subproblems, we first concentrate on the maximisation of the sonication area on a patient surface. The sound waves form a double cone in the center of which the main energy transfer to the tumour tissue takes place. A maximally opened cone allows for the use of as many degrees of freedom as possible which represents a good basis for further computations. The cone is restricted by so called areas of risk, which are healthy tissue domains. These areas should not be affected by the ultrasound. For a future simulation it is necessary to know about the temperature distribution in the focal points depending on the available parameters. We establish a short-cut model to overcome the time-consuming problem of solving the nonlinear wave equation at each data point. This short-cut model characterises the diffusion of heat using the heat equation. We solve the heat equation by using Green's functions.

R818

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles8180
Mobicred@R77pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

A high intensity focused ultrasound (HIFU) treatment has a very complex therapy planning structure. In this thesis we introduce a workflow on the basis of a decomposition of the therapy plan into controllable but coupled subproblems. Under certain assumptions, including the decoupling of these subproblems, we first concentrate on the maximisation of the sonication area on a patient surface. The sound waves form a double cone in the center of which the main energy transfer to the tumour tissue takes place. A maximally opened cone allows for the use of as many degrees of freedom as possible which represents a good basis for further computations. The cone is restricted by so called areas of risk, which are healthy tissue domains. These areas should not be affected by the ultrasound. For a future simulation it is necessary to know about the temperature distribution in the focal points depending on the available parameters. We establish a short-cut model to overcome the time-consuming problem of solving the nonlinear wave equation at each data point. This short-cut model characterises the diffusion of heat using the heat equation. We solve the heat equation by using Green's functions.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

AV Akademikerverlag

Country of origin

United States

Release date

April 2012

Availability

Expected to ship within 10 - 15 working days

First published

April 2012

Authors

Dimensions

229 x 152 x 5mm (L x W x T)

Format

Paperback - Trade

Pages

76

ISBN-13

978-3-639-38944-9

Barcode

9783639389449

Categories

LSN

3-639-38944-1



Trending On Loot