Blind Deconvolution through Polarization Diversity of Long Exposure Imagery (Paperback)


The purpose of the algorithm developed in this thesis was to create a post processing method that could resolve objects at low signal levels using polarization diversity and no knowledge of the atmospheric seeing conditions. The process uses a two-channel system, one unpolarized image and one polarized image, in a GEM algorithm to reconstruct the object. Long exposure images were simulated and a smile Kolmogorov model used. This allowed for the atmosphere to be characterized by single parameter, the Fried Parameter. Introducing a novel polarization prior that restricts the polarization parameter, it was possible to determine the Fried Parameter to within half a centimeter without any addition knowledge or processes. It was also found that when a high polarization diversity was present in the image could be reconstructed with significantly better resolution and signal level did not affect this resolving capability. At very low signal levels, imagery with low to no diversity could not be resolved at all whereas high diversity resolved equally as well as if there was a high signal level.

R1,401

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles14010
Mobicred@R131pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

The purpose of the algorithm developed in this thesis was to create a post processing method that could resolve objects at low signal levels using polarization diversity and no knowledge of the atmospheric seeing conditions. The process uses a two-channel system, one unpolarized image and one polarized image, in a GEM algorithm to reconstruct the object. Long exposure images were simulated and a smile Kolmogorov model used. This allowed for the atmosphere to be characterized by single parameter, the Fried Parameter. Introducing a novel polarization prior that restricts the polarization parameter, it was possible to determine the Fried Parameter to within half a centimeter without any addition knowledge or processes. It was also found that when a high polarization diversity was present in the image could be reconstructed with significantly better resolution and signal level did not affect this resolving capability. At very low signal levels, imagery with low to no diversity could not be resolved at all whereas high diversity resolved equally as well as if there was a high signal level.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Biblioscholar

Country of origin

United States

Release date

November 2012

Availability

Expected to ship within 10 - 15 working days

First published

November 2012

Authors

Dimensions

246 x 189 x 3mm (L x W x T)

Format

Paperback - Trade

Pages

54

ISBN-13

978-1-288-31344-0

Barcode

9781288313440

Categories

LSN

1-288-31344-6



Trending On Loot