Trmm Precipitation Radar and Microwave Imager Observations of Convective and Stratiform Rain Over Land and Their Theoretical Implications (Paperback)


Observations of brightness temperature, Tb made over land regions by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer have been analyzed along with the nearly simultaneous measurements of the vertical profiles of reflectivity factor, Z, made by the Precipitation Radar (PR) onboard the TRMM satellite. This analysis is performed to explore the interrelationship between the TMI and PR data in areas that are covered predominantly by convective or stratiform rain. In particular, we have compared on a scale of 20 km, average vertical profiles of Z with the averages of Tbs in the 19, 37 and 85 GHz channels. Generally, we find from these data that as Z increases, Tbs in the three channels decrease due to extinction. In order to explain physically the relationship between the Tb and Z observations, we have performed radiative transfer simulations utilizing vertical profiles of hydrometeors applicable to convective and stratiform rain regions. These profiles are constructed taking guidance from the Z observations of PR and recent LDR and ZDR measurements made by land-based polarimetric radars.

R506

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles5060
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Observations of brightness temperature, Tb made over land regions by the Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) radiometer have been analyzed along with the nearly simultaneous measurements of the vertical profiles of reflectivity factor, Z, made by the Precipitation Radar (PR) onboard the TRMM satellite. This analysis is performed to explore the interrelationship between the TMI and PR data in areas that are covered predominantly by convective or stratiform rain. In particular, we have compared on a scale of 20 km, average vertical profiles of Z with the averages of Tbs in the 19, 37 and 85 GHz channels. Generally, we find from these data that as Z increases, Tbs in the three channels decrease due to extinction. In order to explain physically the relationship between the Tb and Z observations, we have performed radiative transfer simulations utilizing vertical profiles of hydrometeors applicable to convective and stratiform rain regions. These profiles are constructed taking guidance from the Z observations of PR and recent LDR and ZDR measurements made by land-based polarimetric radars.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Bibliogov

Country of origin

United States

Release date

August 2013

Availability

Expected to ship within 10 - 15 working days

First published

August 2013

Authors

Dimensions

246 x 189 x 4mm (L x W x T)

Format

Paperback - Trade

Pages

84

ISBN-13

978-1-287-29155-8

Barcode

9781287291558

Categories

LSN

1-287-29155-4



Trending On Loot