Organization of Afferents from the Brain Stem Nuclei to the Cerebellar Cortex in the Cat (Paperback)


The afferent connections of the cerebellar cortex of the cat have been extensively in- vestigated by Alf Brodal and his collaborators using retrograde degeneration methods. These experiments (reviewed in Larsell and Jansen 1972) established that cerebellar corti- cal afferents arise from widespread areas of the brain stem and spinal cord. Brain stem nuclei shown to provide input to the cerebellar cortex included the pontine nuclei, the medial and descending vestibular nuclei, vestibular cell group x, the lateral reticular nucleus, the perihypoglossal nuclei, the paramedian reticular nucleus, the inferior olive, and the external cuneate nucleus. In addition, the red nucleus and certain of the raphe nuclei were thought to send fibers to the intracerebellar nuclei, but not to the cortex. With the advent of the horseradish peroxidase (HRP) technique, new information on the distribution and organization of cerebellar cortical afferents has recently be- come available. Thus Gould and Graybiel (1976) demonstrated that afferents to the cat cerebellar cortex arise from a previously undescribed lateral tegmental cell group at the level of the isthmus and from the intracerebellar nuclei, as well as from the classic precerebellar nuclei. Moreover, these studies showed that fibers from the vestibular nuclei, previously thought to be distributed only to the flocculonodular lobe and uvula, reach widespread areas of the cerebellar cortex. Experiments by other investi- gators have established that the cerebellar cortex of the cat receives afferents from cer- tain of the raphe nuclei (Shinnar et al. 1975; Taber Pierce et al.

R1,507

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles15070
Mobicred@R141pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

The afferent connections of the cerebellar cortex of the cat have been extensively in- vestigated by Alf Brodal and his collaborators using retrograde degeneration methods. These experiments (reviewed in Larsell and Jansen 1972) established that cerebellar corti- cal afferents arise from widespread areas of the brain stem and spinal cord. Brain stem nuclei shown to provide input to the cerebellar cortex included the pontine nuclei, the medial and descending vestibular nuclei, vestibular cell group x, the lateral reticular nucleus, the perihypoglossal nuclei, the paramedian reticular nucleus, the inferior olive, and the external cuneate nucleus. In addition, the red nucleus and certain of the raphe nuclei were thought to send fibers to the intracerebellar nuclei, but not to the cortex. With the advent of the horseradish peroxidase (HRP) technique, new information on the distribution and organization of cerebellar cortical afferents has recently be- come available. Thus Gould and Graybiel (1976) demonstrated that afferents to the cat cerebellar cortex arise from a previously undescribed lateral tegmental cell group at the level of the isthmus and from the intracerebellar nuclei, as well as from the classic precerebellar nuclei. Moreover, these studies showed that fibers from the vestibular nuclei, previously thought to be distributed only to the flocculonodular lobe and uvula, reach widespread areas of the cerebellar cortex. Experiments by other investi- gators have established that the cerebellar cortex of the cat receives afferents from cer- tain of the raphe nuclei (Shinnar et al. 1975; Taber Pierce et al.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer-Verlag

Country of origin

Germany

Series

Advances in Anatomy, Embryology and Cell Biology, 62

Release date

September 1980

Availability

Expected to ship within 10 - 15 working days

First published

1980

Authors

Dimensions

244 x 170 x 5mm (L x W x T)

Format

Paperback

Pages

90

ISBN-13

978-3-540-09960-4

Barcode

9783540099604

Categories

LSN

3-540-09960-3



Trending On Loot