A Kinetic Theory Approach to Capturing Interneuronal Correlation in Feed-Forward Networks (Paperback)


We present an approach for using kinetic theory to capture first and second order statistics of neuronal activity. We coarse grain neuronal networks into populations of neurons and calculate the population average firing rate and output cross-correlation in response to time varying correlated input. We initially derive coupling equations for the populations based only on first and second order statistics of neuronal activity and the network connectivity. This coupling scheme is based on the hypothesis that second order statistics of the network connectivity are sufficient to determine second order statistics of neuronal activity. Using this coupling scheme, we implement a kinetic theory representation of a simple feed-forward network and demonstrate that this kinetic theory model captures key aspects of the emergence and propagation of correlations in the network, as long as the correlations do not become too strong. By analyzing the correlated activity of feed-forward networks with a variety of connectivity patterns, we provide evidence supporting our hypothesis of the sufficiency of second order connectivity statistics. To improve the kinetic theory performance under high correlation in feed-forward networks, we propose an inference method to estimate the rate of synchronous firing by more than two neurons. Then we include the effect of such events in the evolution of the postsynaptic populations by deriving improved coupling equations for populations. With these improved coupling equations, we obtain an improved kinetic theory representation of the simple feed-forward network. To implement it, we make truncation approximations at different levels in the input and demonstrate that our improved kinetic theory model can capture the behavior of first and second order firing activity under higher correlation.

R2,037

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles20370
Mobicred@R191pm x 12* Mobicred Info
Free Delivery
Delivery AdviceOut of stock

Toggle WishListAdd to wish list
Review this Item

Product Description

We present an approach for using kinetic theory to capture first and second order statistics of neuronal activity. We coarse grain neuronal networks into populations of neurons and calculate the population average firing rate and output cross-correlation in response to time varying correlated input. We initially derive coupling equations for the populations based only on first and second order statistics of neuronal activity and the network connectivity. This coupling scheme is based on the hypothesis that second order statistics of the network connectivity are sufficient to determine second order statistics of neuronal activity. Using this coupling scheme, we implement a kinetic theory representation of a simple feed-forward network and demonstrate that this kinetic theory model captures key aspects of the emergence and propagation of correlations in the network, as long as the correlations do not become too strong. By analyzing the correlated activity of feed-forward networks with a variety of connectivity patterns, we provide evidence supporting our hypothesis of the sufficiency of second order connectivity statistics. To improve the kinetic theory performance under high correlation in feed-forward networks, we propose an inference method to estimate the rate of synchronous firing by more than two neurons. Then we include the effect of such events in the evolution of the postsynaptic populations by deriving improved coupling equations for populations. With these improved coupling equations, we obtain an improved kinetic theory representation of the simple feed-forward network. To implement it, we make truncation approximations at different levels in the input and demonstrate that our improved kinetic theory model can capture the behavior of first and second order firing activity under higher correlation.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Proquest, Umi Dissertation Publishing

Country of origin

United States

Release date

September 2011

Availability

Supplier out of stock. If you add this item to your wish list we will let you know when it becomes available.

First published

September 2011

Authors

Dimensions

254 x 203 x 8mm (L x W x T)

Format

Paperback - Trade

Pages

118

ISBN-13

978-1-243-63241-8

Barcode

9781243632418

Categories

LSN

1-243-63241-0



Trending On Loot