Electromagnetic Optics of Thin-Film Coatings - Light Scattering, Giant Field Enhancement, and Planar Microcavities (Hardcover)

, ,
Three experts in the field of thin-film optics present a detailed and self-contained theoretical study of planar multilayers and how they can be effectively exploited in both traditional and modern applications. Starting with a discussion of the relevant electromagnetic optics, the fundamental optical properties of multilayers are introduced using an electromagnetic approach based on a direct solving of Maxwell's equations by Fourier transforms. This powerful approach is illustrated through the comprehensive description of two of the most important phenomena in multilayers, i.e. giant field enhancement in dielectric stacks and light scattering from thin-film optical filters. The same approach is extended to the description of the operation of planar microcavities and the balance of energy between radiated and trapped light. This book will be valuable to researchers, engineers and graduate students with interests in nanophotonics, optical telecommunications, observational astronomy and gravitational wave detection.

R1,962

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles19620
Mobicred@R184pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Three experts in the field of thin-film optics present a detailed and self-contained theoretical study of planar multilayers and how they can be effectively exploited in both traditional and modern applications. Starting with a discussion of the relevant electromagnetic optics, the fundamental optical properties of multilayers are introduced using an electromagnetic approach based on a direct solving of Maxwell's equations by Fourier transforms. This powerful approach is illustrated through the comprehensive description of two of the most important phenomena in multilayers, i.e. giant field enhancement in dielectric stacks and light scattering from thin-film optical filters. The same approach is extended to the description of the operation of planar microcavities and the balance of energy between radiated and trapped light. This book will be valuable to researchers, engineers and graduate students with interests in nanophotonics, optical telecommunications, observational astronomy and gravitational wave detection.

Customer Reviews

No reviews or ratings yet - be the first to create one!




Trending On Loot