Climate Change Impacts in Hydrology - Quantification and Societal Adaptation. (Paperback)


The research presented here attempts to bridge science and policy through the quantification of climate change impacts and the analysis of a science-fed participatory process to face a sustainability challenge in the San Pedro Basin (Arizona). Paper 1 presents an assessment of a collaborative development process of a decision support system model between academia and a multi-stakeholder consortium created to solve water sustainability problems in a local watershed. This study analyzes how science-fed multi-stakeholder participatory processes lead to sustainability learning promoting resilience and adaptation. Paper 2 presents an approach to link an ensemble of global climate model outputs with a hydrological model to quantify climate change impacts in the hydrology of a basin, providing a range of uncertainty in the results. Precipitation projections for the current century from different climate models and IPCC scenarios are used to obtain recharge estimates as inputs to a groundwater model. Quantifying changes in the basin's water budget due to changes in recharge, evapotranspiration (ET) rates are assumed to depend only on groundwater levels. Picking on such assumption, Paper 3 explores the effects of a changing climate on ET. Using experimental eddy covariance data from three riparian sites, it analyzes seasonal controls on ET. An approach to quantify evapotranspiration rates and growing season length under warmer climates is proposed. Results indicate that although atmospheric demand will be greater, increasing pan and reference crop evaporation, ET rates at the studied field sites will remain unchanged due to stomatal regulation. However, the length of the growing season will increase, mainly with an earlier leaf-out and at a lesser level by a delayed growing season end. These findings - implying decreased aquifer recharge, increased riparian water use and a lesser water balance - are very relevant for water management in semi-arid regions. Paper 4, in which I am second author, explores the theory relating changes in area-average and pan evaporation. Using the same experimental data as Paper 3, it corroborates a previous theoretical relationship and discusses the validity of Bouchet's hypothesis.

R2,042

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles20420
Mobicred@R191pm x 12* Mobicred Info
Free Delivery
Delivery AdviceOut of stock

Toggle WishListAdd to wish list
Review this Item

Product Description

The research presented here attempts to bridge science and policy through the quantification of climate change impacts and the analysis of a science-fed participatory process to face a sustainability challenge in the San Pedro Basin (Arizona). Paper 1 presents an assessment of a collaborative development process of a decision support system model between academia and a multi-stakeholder consortium created to solve water sustainability problems in a local watershed. This study analyzes how science-fed multi-stakeholder participatory processes lead to sustainability learning promoting resilience and adaptation. Paper 2 presents an approach to link an ensemble of global climate model outputs with a hydrological model to quantify climate change impacts in the hydrology of a basin, providing a range of uncertainty in the results. Precipitation projections for the current century from different climate models and IPCC scenarios are used to obtain recharge estimates as inputs to a groundwater model. Quantifying changes in the basin's water budget due to changes in recharge, evapotranspiration (ET) rates are assumed to depend only on groundwater levels. Picking on such assumption, Paper 3 explores the effects of a changing climate on ET. Using experimental eddy covariance data from three riparian sites, it analyzes seasonal controls on ET. An approach to quantify evapotranspiration rates and growing season length under warmer climates is proposed. Results indicate that although atmospheric demand will be greater, increasing pan and reference crop evaporation, ET rates at the studied field sites will remain unchanged due to stomatal regulation. However, the length of the growing season will increase, mainly with an earlier leaf-out and at a lesser level by a delayed growing season end. These findings - implying decreased aquifer recharge, increased riparian water use and a lesser water balance - are very relevant for water management in semi-arid regions. Paper 4, in which I am second author, explores the theory relating changes in area-average and pan evaporation. Using the same experimental data as Paper 3, it corroborates a previous theoretical relationship and discusses the validity of Bouchet's hypothesis.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Proquest, Umi Dissertation Publishing

Country of origin

United States

Release date

September 2011

Availability

Supplier out of stock. If you add this item to your wish list we will let you know when it becomes available.

First published

September 2011

Authors

Dimensions

254 x 203 x 9mm (L x W x T)

Format

Paperback - Trade

Pages

142

ISBN-13

978-1-243-61159-8

Barcode

9781243611598

Categories

LSN

1-243-61159-6



Trending On Loot