Field Theory of Multiscale Plasticity (Hardcover)


This unique book provides a concise and systematic treatment of foundational material on dislocations and metallurgy and an up-to-date discussion of multiscale modeling of materials, which ultimately leads to the field theory of multiscale plasticity (FTMP). Unlike conventional continuum models, this approach addresses the evolving inhomogeneities induced by deformation, typically as dislocation substructures like dislocation cells, as well as their interplay at more than one scale. This is an impressively visual text with many and varied examples and viewgraphs. In particular, the book presents a feasible constitutive model applicable to crystal plasticity-based finite element method (FEM) simulations. It will be an invaluable resource, accessible to undergraduate and graduate students as well as researchers in mechanical engineering, solid mechanics, applied physics, mathematics, materials science, and technology.

R5,436

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles54360
Mobicred@R509pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

This unique book provides a concise and systematic treatment of foundational material on dislocations and metallurgy and an up-to-date discussion of multiscale modeling of materials, which ultimately leads to the field theory of multiscale plasticity (FTMP). Unlike conventional continuum models, this approach addresses the evolving inhomogeneities induced by deformation, typically as dislocation substructures like dislocation cells, as well as their interplay at more than one scale. This is an impressively visual text with many and varied examples and viewgraphs. In particular, the book presents a feasible constitutive model applicable to crystal plasticity-based finite element method (FEM) simulations. It will be an invaluable resource, accessible to undergraduate and graduate students as well as researchers in mechanical engineering, solid mechanics, applied physics, mathematics, materials science, and technology.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Cambridge UniversityPress

Country of origin

United Kingdom

Release date

September 2023

Availability

Expected to ship within 12 - 17 working days

Authors

Format

Hardcover

Pages

950

ISBN-13

978-1-108-83660-9

Barcode

9781108836609

Categories

LSN

1-108-83660-7



Trending On Loot