Self-Organization During Friction - Advanced Surface-Engineered Materials and Systems Design (Hardcover)


In our present era of nanoscience and nanotechnology, new materials are poised to take center stage in dramatically improving friction and wear behavior under extreme conditions. Compiled by two eminent experts, Self-Organization During Friction: Advanced Surface-Engineered Materials and Systems Design details the latest advances and developments in self-organization phenomena, physical and chemical aspects of friction, and new methods of friction control using advanced materials and coatings. Approaching nanomaterials from the perspective of irreversible thermodynamics and self-organization, this work presents a new approach to developing an emerging generation of surface-engineered self-adaptive nanostructured materials. The book demonstrates how nanoscale structure, synergistic alloying, and the non-equilibrium state of surface-engineered layers affects the capacity of these next-generation materials to resist wear in heavily loaded tribosystems. These links become clear through discussions on non-equilibrium thermodynamics, tribological compatibility, and self-organization phenomena during friction. International experts also supply cutting-edge information on nanocrystalline and nanolaminated coatings while tracing new trends in materials science and surface engineering at the nanoscale. By combining detailed discussions on the underlying theory with practical examples of extreme tribological applications, Self-Organization During Friction outlines a forward-looking strategy for developing and implementing new surface-engineered materials that promise previously unattainable levels of tribological performance.

R6,121

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles61210
Mobicred@R574pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 12 - 17 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

In our present era of nanoscience and nanotechnology, new materials are poised to take center stage in dramatically improving friction and wear behavior under extreme conditions. Compiled by two eminent experts, Self-Organization During Friction: Advanced Surface-Engineered Materials and Systems Design details the latest advances and developments in self-organization phenomena, physical and chemical aspects of friction, and new methods of friction control using advanced materials and coatings. Approaching nanomaterials from the perspective of irreversible thermodynamics and self-organization, this work presents a new approach to developing an emerging generation of surface-engineered self-adaptive nanostructured materials. The book demonstrates how nanoscale structure, synergistic alloying, and the non-equilibrium state of surface-engineered layers affects the capacity of these next-generation materials to resist wear in heavily loaded tribosystems. These links become clear through discussions on non-equilibrium thermodynamics, tribological compatibility, and self-organization phenomena during friction. International experts also supply cutting-edge information on nanocrystalline and nanolaminated coatings while tracing new trends in materials science and surface engineering at the nanoscale. By combining detailed discussions on the underlying theory with practical examples of extreme tribological applications, Self-Organization During Friction outlines a forward-looking strategy for developing and implementing new surface-engineered materials that promise previously unattainable levels of tribological performance.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Crc Press

Country of origin

United States

Release date

September 2006

Availability

Expected to ship within 12 - 17 working days

First published

September 2006

Editors

,

Dimensions

254 x 178 x 30mm (L x W x T)

Format

Hardcover

Pages

468

ISBN-13

978-1-57444-719-4

Barcode

9781574447194

Categories

LSN

1-57444-719-X



Trending On Loot