Active Noise Control in Supersonic Impinging Jets Actuator Design, Reduced-Order Modeling (Paperback)


In recent years it has been demonstrated that direct microjet injection into the shear layer of the main jet disrupts the feedback loop inherent in high speed impinging jet flows, thereby significantly reducing the adverse effects. The amount of noise reduced by microjet actuation is known to be dependent on nozzle operating conditions. In this book, two active control strategies using microjets are suggested to maintain a uniform, reliable, and optimal reduction of these tones over the entire range of operating conditions. In order to obtain an optimal performance of the actuator, a two-mode feedback model that captures both the low and high-frequency Rossiter mode was suggested to investigate the role of pulsed microjet in the feedback loop. Due to the fact that a low frequency pulsing brought about additional reduction compared to high frequency pulsing, the presence of low frequency mode is identified. In the context of the analytic model, the effect of pulsing is modeled using a input-shaping controller that accomplishes noise-reduction through a suitable redistribution of the acoustic excitation over the high and low frequencies.

R1,293

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles12930
Mobicred@R121pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

In recent years it has been demonstrated that direct microjet injection into the shear layer of the main jet disrupts the feedback loop inherent in high speed impinging jet flows, thereby significantly reducing the adverse effects. The amount of noise reduced by microjet actuation is known to be dependent on nozzle operating conditions. In this book, two active control strategies using microjets are suggested to maintain a uniform, reliable, and optimal reduction of these tones over the entire range of operating conditions. In order to obtain an optimal performance of the actuator, a two-mode feedback model that captures both the low and high-frequency Rossiter mode was suggested to investigate the role of pulsed microjet in the feedback loop. Due to the fact that a low frequency pulsing brought about additional reduction compared to high frequency pulsing, the presence of low frequency mode is identified. In the context of the analytic model, the effect of pulsing is modeled using a input-shaping controller that accomplishes noise-reduction through a suitable redistribution of the acoustic excitation over the high and low frequencies.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

VDM Verlag

Country of origin

Germany

Release date

2009

Availability

Expected to ship within 10 - 15 working days

First published

2009

Authors

Dimensions

229 x 152 x 6mm (L x W x T)

Format

Paperback - Trade

Pages

116

ISBN-13

978-3-639-10766-1

Barcode

9783639107661

Categories

LSN

3-639-10766-7



Trending On Loot