Modular Functions in Analytic Number Theory (Hardcover, 2nd Revised edition)


Knopp's engaging book presents an introduction to modular functions in number theory by concentrating on two modular functions, $\eta(\tau)$ and $\vartheta(\tau)$, and their applications to two number-theoretic functions, $p(n)$ and $r_s(n)$. They are well chosen, as at the heart of these particular applications to the treatment of these specific number-theoretic functions lies the general theory of automorphic functions, a theory of far-reaching significance with important connections to a great many fields of mathematics. The book is essentially self-contained, assuming only a good first-year course in analysis. The excellent exposition presents the beautiful interplay between modular forms and number theory, making the book an excellent introduction to analytic number theory for a beginning graduate student. Table of Contents: The Modular Group and Certain Subgroups: 1. The modular group; 2. A fundamental region for $\Gamma(1)$; 3. Some subgroups of $\Gamma(1)$; 4. Fundamental regions of subgroups. Modular Functions and Forms: 1. Multiplier systems; 2. Parabolic points; 3 Fourier expansions; 4. Definitions of modular function and modular form; 5. Several important theorems. The Modular Forms $\eta(\tau)$ and $\vartheta(\tau)$: 1. The function $\eta(\tau)$; 2. Several famous identities; 3. Transformation formulas for $\eta(\tau)$; 4. The function $\vartheta(\tau)$. The Multiplier Systems $\upsilon_{\eta}$ and $\upsilon_{\vartheta}$: 1. Preliminaries; 2. Proof of theorem 2; 3. Proof of theorem 3. Sums of Squares: 1. Statement of results; 2. Lipschitz summation formula; 3. The function $\psi_s(\tau)$; 4. The expansion of $\psi_s(\tau)$ at $-1$; 5. Proofs of theorems 2 and 3; 6. Related results. The Order of Magnitude of $p(n)$: 1. A simple inequality for $p(n)$; 2. The asymptotic formula for $p(n)$; 3. Proof of theorem 2. The Ramanujan Congruences for $p(n)$: 1. Statement of the congruences; 2. The functions $\Phi_{p,r}(\tau)$ and $h_p(\tau)$; 3. The function $s_{p, r}(\tau)$; 4. The congruence for $p(n)$ Modulo 11; 5. Newton's formula; 6. The modular equation for the prime 5; 7. The modular equation for the prime 7. Proof of the Ramanujan Congruences for Powers of 5 and 7: 1. Preliminaries; 2. Application of the modular equation; 3. A digression: The Ramanujan identities for powers of the prime 5; 4. Completion of the proof for powers of 5; 5. Start of the proof for powers of 7; 6. A second digression: The Ramanujan identities for powers of the prime 7; 7. Completion of the proof for powers of 7. Index. (CHEL/337.H)

R792

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles7920
Mobicred@R74pm x 12* Mobicred Info
Free Delivery
Delivery AdviceOut of stock

Toggle WishListAdd to wish list
Review this Item

Product Description

Knopp's engaging book presents an introduction to modular functions in number theory by concentrating on two modular functions, $\eta(\tau)$ and $\vartheta(\tau)$, and their applications to two number-theoretic functions, $p(n)$ and $r_s(n)$. They are well chosen, as at the heart of these particular applications to the treatment of these specific number-theoretic functions lies the general theory of automorphic functions, a theory of far-reaching significance with important connections to a great many fields of mathematics. The book is essentially self-contained, assuming only a good first-year course in analysis. The excellent exposition presents the beautiful interplay between modular forms and number theory, making the book an excellent introduction to analytic number theory for a beginning graduate student. Table of Contents: The Modular Group and Certain Subgroups: 1. The modular group; 2. A fundamental region for $\Gamma(1)$; 3. Some subgroups of $\Gamma(1)$; 4. Fundamental regions of subgroups. Modular Functions and Forms: 1. Multiplier systems; 2. Parabolic points; 3 Fourier expansions; 4. Definitions of modular function and modular form; 5. Several important theorems. The Modular Forms $\eta(\tau)$ and $\vartheta(\tau)$: 1. The function $\eta(\tau)$; 2. Several famous identities; 3. Transformation formulas for $\eta(\tau)$; 4. The function $\vartheta(\tau)$. The Multiplier Systems $\upsilon_{\eta}$ and $\upsilon_{\vartheta}$: 1. Preliminaries; 2. Proof of theorem 2; 3. Proof of theorem 3. Sums of Squares: 1. Statement of results; 2. Lipschitz summation formula; 3. The function $\psi_s(\tau)$; 4. The expansion of $\psi_s(\tau)$ at $-1$; 5. Proofs of theorems 2 and 3; 6. Related results. The Order of Magnitude of $p(n)$: 1. A simple inequality for $p(n)$; 2. The asymptotic formula for $p(n)$; 3. Proof of theorem 2. The Ramanujan Congruences for $p(n)$: 1. Statement of the congruences; 2. The functions $\Phi_{p,r}(\tau)$ and $h_p(\tau)$; 3. The function $s_{p, r}(\tau)$; 4. The congruence for $p(n)$ Modulo 11; 5. Newton's formula; 6. The modular equation for the prime 5; 7. The modular equation for the prime 7. Proof of the Ramanujan Congruences for Powers of 5 and 7: 1. Preliminaries; 2. Application of the modular equation; 3. A digression: The Ramanujan identities for powers of the prime 5; 4. Completion of the proof for powers of 5; 5. Start of the proof for powers of 7; 6. A second digression: The Ramanujan identities for powers of the prime 7; 7. Completion of the proof for powers of 7. Index. (CHEL/337.H)

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

American Mathematical Society

Country of origin

United States

Series

AMS Chelsea Publishing

Release date

December 2002

Availability

Supplier out of stock. If you add this item to your wish list we will let you know when it becomes available.

Authors

Dimensions

157 x 234 x 12mm (L x W x T)

Format

Hardcover

Pages

154

Edition

2nd Revised edition

ISBN-13

978-0-8218-4488-5

Barcode

9780821844885

Categories

LSN

0-8218-4488-1



Trending On Loot