Non-Protein Coding RNAs (Hardcover, 2009 ed.)


This book assembles chapters from experts in the Biophysics of RNA to provide a broadly accessible snapshot of the current status of this rapidly expanding field. The 2006 Nobel Prize in Physiology or Medicine was awarded to the discoverers of RNA interference, highlighting just one example of a large number of non-protein coding RNAs. Because non-protein coding RNAs outnumber protein coding genes in mammals and other higher eukaryotes, it is now thought that the complexity of organisms is correlated with the fraction of their genome that encodes non-protein coding RNAs. Essential biological processes as diverse as cell differentiation, suppression of infecting viruses and parasitic transposons, higher-level organization of eukaryotic chromosomes, and gene expression itself are found to largely be directed by non-protein coding RNAs. The biophysical study of these RNAs employs X-ray crystallography, NMR, ensemble and single molecule fluorescence spectroscopy, optical tweezers, cryo-electron microscopy, and other quantitative tools. This emerging field has begun to unravel the molecular underpinnings of how RNAs fulfill their multitude of roles in sustaining cellular life. The physical and chemical understanding of RNA biology that results from biophysical studies is critical to our ability to harness RNAs for use in biotechnology and human therapy, a prospect that has recently spawned a multi-billion dollar industry.


R5,865

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles58650
Mobicred@R550pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

This book assembles chapters from experts in the Biophysics of RNA to provide a broadly accessible snapshot of the current status of this rapidly expanding field. The 2006 Nobel Prize in Physiology or Medicine was awarded to the discoverers of RNA interference, highlighting just one example of a large number of non-protein coding RNAs. Because non-protein coding RNAs outnumber protein coding genes in mammals and other higher eukaryotes, it is now thought that the complexity of organisms is correlated with the fraction of their genome that encodes non-protein coding RNAs. Essential biological processes as diverse as cell differentiation, suppression of infecting viruses and parasitic transposons, higher-level organization of eukaryotic chromosomes, and gene expression itself are found to largely be directed by non-protein coding RNAs. The biophysical study of these RNAs employs X-ray crystallography, NMR, ensemble and single molecule fluorescence spectroscopy, optical tweezers, cryo-electron microscopy, and other quantitative tools. This emerging field has begun to unravel the molecular underpinnings of how RNAs fulfill their multitude of roles in sustaining cellular life. The physical and chemical understanding of RNA biology that results from biophysical studies is critical to our ability to harness RNAs for use in biotechnology and human therapy, a prospect that has recently spawned a multi-billion dollar industry.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer-Verlag

Country of origin

Germany

Series

Springer Series in Biophysics, 13

Release date

November 2008

Availability

Expected to ship within 10 - 15 working days

First published

2009

Editors

, ,

Dimensions

235 x 155 x 25mm (L x W x T)

Format

Hardcover

Pages

398

Edition

2009 ed.

ISBN-13

978-3-540-70833-9

Barcode

9783540708339

Categories

LSN

3-540-70833-2



Trending On Loot