Foliation Theory in Algebraic Geometry (Paperback, Softcover reprint of the original 1st ed. 2016)


Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classification of psuedoeffective codimension one distributions. Foliations play a fundamental role in algebraic geometry, for example in the proof of abundance for threefolds and to a solution of the Green-Griffiths conjecture for surfaces of general type with positive Segre class. The purpose of this volume is to foster communication and enable interactions between experts who work on holomorphic foliations and birational geometry, and to bring together leading researchers to demonstrate the powerful connection of ideas, methods, and goals shared by these two areas of study.

R5,135

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles51350
Mobicred@R481pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Featuring a blend of original research papers and comprehensive surveys from an international team of leading researchers in the thriving fields of foliation theory, holomorphic foliations, and birational geometry, this book presents the proceedings of the conference "Foliation Theory in Algebraic Geometry," hosted by the Simons Foundation in New York City in September 2013. Topics covered include: Fano and del Pezzo foliations; the cone theorem and rank one foliations; the structure of symmetric differentials on a smooth complex surface and a local structure theorem for closed symmetric differentials of rank two; an overview of lifting symmetric differentials from varieties with canonical singularities and the applications to the classification of AT bundles on singular varieties; an overview of the powerful theory of the variety of minimal rational tangents introduced by Hwang and Mok; recent examples of varieties which are hyperbolic and yet the Green-Griffiths locus is the whole of X; and a classification of psuedoeffective codimension one distributions. Foliations play a fundamental role in algebraic geometry, for example in the proof of abundance for threefolds and to a solution of the Green-Griffiths conjecture for surfaces of general type with positive Segre class. The purpose of this volume is to foster communication and enable interactions between experts who work on holomorphic foliations and birational geometry, and to bring together leading researchers to demonstrate the powerful connection of ideas, methods, and goals shared by these two areas of study.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer International Publishing AG

Country of origin

Switzerland

Series

Simons Symposia

Release date

April 2018

Availability

Expected to ship within 10 - 15 working days

First published

2016

Editors

, ,

Dimensions

235 x 155 x 12mm (L x W x T)

Format

Paperback

Pages

216

Edition

Softcover reprint of the original 1st ed. 2016

ISBN-13

978-3-319-79632-1

Barcode

9783319796321

Categories

LSN

3-319-79632-1



Trending On Loot