Study of Capacity Fade of Lithium-Ion Polymer Battery with Continuous Cycling & Power Performance Modeling of Energy Storage Devices. (Paperback)


Thus far, capacity fade has been ascribed to various mechanisms that include (i) the dissolution of highly resistive surface films on the electrode surface which result from side reactions; (ii) loss in active electrode materials; (iii) phase change in the electrode structure; (iv) loss of electrode contact with the current collector that can lead to complete cell failure. If accurate dynamic prediction models for batteries are to be achieved through the incorporation of the mechanisms of capacity fade, it is important to quantify the contribution of capacity fade to each mechanism. To quantify capacity fade to various mechanism to the overall impedance of the cell, we investigate a complete electrochemical cell for morphological change at the electrode/electrolyte interface and the change in electrode structural after prolong cycling using scanning electron microscopy (SEM), transmission line microscopy (TEM), x-ray diffraction (XRD). Analyses were performed using commercial lithium-ion polymer cell UP383562A (Sony Co.). The electrochemical charge discharge performance was studied using conventional galvanostatic/potentostatic techniques. Fitting techniques using an electrical equivalent circuit was applied to the electrochemical impedance spectra (EIS) using the method of non linear least square fitting (NLLS). Parameter evaluations from the equivalent circuit show that with extended cycling there is a large increase in the impedance of the solid electrolyte impedance, charge transfer resistance and ionic impedance. SEM analysis on the individual electrodes shows that during charge-discharge cycling, thick surface films are deposited on the negative (graphite) electrode surface. These surface films including LiF, Li2CO3 etc. are known to increase the internal impedance of the cell which result in reduce cell performance. No surface films were observed on the cathode (Li1-xCoO 2) electrode surface, however, XRD analysis show the development of some structural defects which are believed to contribute significantly to the overall increase in cell impedance with continuous insertion and extraction of Li ions. The equivalent circuit model obtained from the EIS in the frequency domain can be mapped to a time domain equivalent circuit to accurately represent the dc non-linear behavior, dynamic and transient response of the lithium-ion polymer and electrochemical double layer capacitors (EDLC). More importantly, these models demonstrated that an accurate estimation of the power and energy density relationship in terms of Ragone plots can be obtained.

R2,044

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles20440
Mobicred@R192pm x 12* Mobicred Info
Free Delivery
Delivery AdviceOut of stock

Toggle WishListAdd to wish list
Review this Item

Product Description

Thus far, capacity fade has been ascribed to various mechanisms that include (i) the dissolution of highly resistive surface films on the electrode surface which result from side reactions; (ii) loss in active electrode materials; (iii) phase change in the electrode structure; (iv) loss of electrode contact with the current collector that can lead to complete cell failure. If accurate dynamic prediction models for batteries are to be achieved through the incorporation of the mechanisms of capacity fade, it is important to quantify the contribution of capacity fade to each mechanism. To quantify capacity fade to various mechanism to the overall impedance of the cell, we investigate a complete electrochemical cell for morphological change at the electrode/electrolyte interface and the change in electrode structural after prolong cycling using scanning electron microscopy (SEM), transmission line microscopy (TEM), x-ray diffraction (XRD). Analyses were performed using commercial lithium-ion polymer cell UP383562A (Sony Co.). The electrochemical charge discharge performance was studied using conventional galvanostatic/potentostatic techniques. Fitting techniques using an electrical equivalent circuit was applied to the electrochemical impedance spectra (EIS) using the method of non linear least square fitting (NLLS). Parameter evaluations from the equivalent circuit show that with extended cycling there is a large increase in the impedance of the solid electrolyte impedance, charge transfer resistance and ionic impedance. SEM analysis on the individual electrodes shows that during charge-discharge cycling, thick surface films are deposited on the negative (graphite) electrode surface. These surface films including LiF, Li2CO3 etc. are known to increase the internal impedance of the cell which result in reduce cell performance. No surface films were observed on the cathode (Li1-xCoO 2) electrode surface, however, XRD analysis show the development of some structural defects which are believed to contribute significantly to the overall increase in cell impedance with continuous insertion and extraction of Li ions. The equivalent circuit model obtained from the EIS in the frequency domain can be mapped to a time domain equivalent circuit to accurately represent the dc non-linear behavior, dynamic and transient response of the lithium-ion polymer and electrochemical double layer capacitors (EDLC). More importantly, these models demonstrated that an accurate estimation of the power and energy density relationship in terms of Ragone plots can be obtained.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Proquest, Umi Dissertation Publishing

Country of origin

United States

Release date

September 2011

Availability

Supplier out of stock. If you add this item to your wish list we will let you know when it becomes available.

First published

September 2011

Authors

Dimensions

254 x 203 x 10mm (L x W x T)

Format

Paperback - Trade

Pages

154

ISBN-13

978-1-243-51128-7

Barcode

9781243511287

Categories

LSN

1-243-51128-1



Trending On Loot