Application of FPGA to Real-Time Machine Learning - Hardware Reservoir Computers and Software Image Processing (Hardcover, 1st ed. 2018)


This book lies at the interface of machine learning - a subfield of computer science that develops algorithms for challenging tasks such as shape or image recognition, where traditional algorithms fail - and photonics - the physical science of light, which underlies many of the optical communications technologies used in our information society. It provides a thorough introduction to reservoir computing and field-programmable gate arrays (FPGAs). Recently, photonic implementations of reservoir computing (a machine learning algorithm based on artificial neural networks) have made a breakthrough in optical computing possible. In this book, the author pushes the performance of these systems significantly beyond what was achieved before. By interfacing a photonic reservoir computer with a high-speed electronic device (an FPGA), the author successfully interacts with the reservoir computer in real time, allowing him to considerably expand its capabilities and range of possible applications. Furthermore, the author draws on his expertise in machine learning and FPGA programming to make progress on a very different problem, namely the real-time image analysis of optical coherence tomography for atherosclerotic arteries.

R3,743

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles37430
Mobicred@R351pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

This book lies at the interface of machine learning - a subfield of computer science that develops algorithms for challenging tasks such as shape or image recognition, where traditional algorithms fail - and photonics - the physical science of light, which underlies many of the optical communications technologies used in our information society. It provides a thorough introduction to reservoir computing and field-programmable gate arrays (FPGAs). Recently, photonic implementations of reservoir computing (a machine learning algorithm based on artificial neural networks) have made a breakthrough in optical computing possible. In this book, the author pushes the performance of these systems significantly beyond what was achieved before. By interfacing a photonic reservoir computer with a high-speed electronic device (an FPGA), the author successfully interacts with the reservoir computer in real time, allowing him to considerably expand its capabilities and range of possible applications. Furthermore, the author draws on his expertise in machine learning and FPGA programming to make progress on a very different problem, namely the real-time image analysis of optical coherence tomography for atherosclerotic arteries.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer International Publishing AG

Country of origin

Switzerland

Series

Springer Theses

Release date

May 2018

Availability

Expected to ship within 10 - 15 working days

First published

2018

Authors

Dimensions

235 x 155mm (L x W)

Format

Hardcover

Pages

171

Edition

1st ed. 2018

ISBN-13

978-3-319-91052-9

Barcode

9783319910529

Categories

LSN

3-319-91052-3



Trending On Loot