Reshaping of Dirac Cones in Topological Insulators and Graphene (Paperback, 1st ed. 2021)


Dirac cones are ubiquitous to non-trivial quantum matter and are expected to boost and reshape the field of modern electronics. Particularly relevant examples where these cones arise are topological insulators and graphene. From a fundamental perspective, this thesis proposes schemes towards modifying basic properties of these cones in the aforementioned materials. The thesis begins with a brief historical introduction which is followed by an extensive chapter that endows the reader with the basic tools of symmetry and topology needed to understand the remaining text. The subsequent four chapters are devoted to the reshaping of Dirac cones by external fields and delta doping. At all times, the ideas discussed in the second chapter are always a guiding principle to understand the phenomena discussed in those four chapters. As a result, the thesis is cohesive and represents a major advance in our understanding of the physics of Dirac materials.

R2,931

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles29310
Mobicred@R275pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

Dirac cones are ubiquitous to non-trivial quantum matter and are expected to boost and reshape the field of modern electronics. Particularly relevant examples where these cones arise are topological insulators and graphene. From a fundamental perspective, this thesis proposes schemes towards modifying basic properties of these cones in the aforementioned materials. The thesis begins with a brief historical introduction which is followed by an extensive chapter that endows the reader with the basic tools of symmetry and topology needed to understand the remaining text. The subsequent four chapters are devoted to the reshaping of Dirac cones by external fields and delta doping. At all times, the ideas discussed in the second chapter are always a guiding principle to understand the phenomena discussed in those four chapters. As a result, the thesis is cohesive and represents a major advance in our understanding of the physics of Dirac materials.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer Nature Switzerland AG

Country of origin

Switzerland

Series

Springer Theses

Release date

December 2021

Availability

Expected to ship within 10 - 15 working days

First published

2021

Authors

Dimensions

235 x 155mm (L x W)

Format

Paperback

Pages

183

Edition

1st ed. 2021

ISBN-13

978-3-03-061557-4

Barcode

9783030615574

Categories

LSN

3-03-061557-X



Trending On Loot