An Experimental Study of Characteristic Combustion-Driven Flow for Cfd Validation (Paperback)


A series of uni-element rocket injector studies were completed to provide benchmark quality data needed to validate computational fluid dynamic models. A shear coaxial injector geometry was selected as the primary injector for study using gaseous hydrogen/oxygen and gaseous hydrogen/liquid oxygen propellants. Emphasis was placed on the use of non-intrusive diagnostic techniques to characterize the flowfields inside an optically-accessible rocket chamber. Measurements of the velocity and species fields were obtained using laser velocimetry and Raman spectroscopy, respectively Qualitative flame shape information was also obtained using laser-induced fluorescence excited from OH radicals and laser light scattering studies of aluminum oxide particle seeded combusting flows. The gaseous hydrogen/liquid oxygen propellant studies for the shear coaxial injector focused on breakup mechanisms associated with the liquid oxygen jet under sub-critical pressure conditions. Laser sheet illumination techniques were used to visualize the core region of the jet and a Phase Doppler Particle Analyzer was utilized for drop velocity, size and size distribution characterization. The results of these studies indicated that the shear coaxial geometry configuration was a relatively poor injector in terms of mixing. The oxygen core was observed to extend well downstream of the injector and a significant fraction of the mixing occurred in the near nozzle region where measurements were not possible to obtain Detailed velocity and species measurements were obtained to allow CFD model validation and this set of benchmark data represents the most comprehensive data set available to date As an extension of the investigation, a series of gas/gas injector studies were conducted in support of the X-33 Reusable Launch Vehicle program. A Gas/Gas Injector Technology team was formed consisting of the Marshall Space Flight Center, the NASA Lewis Research Center, Rocketdyne and Penn State.

R415
List Price R514
Save R99 19%

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles4150
Delivery AdviceOut of stock

Toggle WishListAdd to wish list
Review this Item

Product Description

A series of uni-element rocket injector studies were completed to provide benchmark quality data needed to validate computational fluid dynamic models. A shear coaxial injector geometry was selected as the primary injector for study using gaseous hydrogen/oxygen and gaseous hydrogen/liquid oxygen propellants. Emphasis was placed on the use of non-intrusive diagnostic techniques to characterize the flowfields inside an optically-accessible rocket chamber. Measurements of the velocity and species fields were obtained using laser velocimetry and Raman spectroscopy, respectively Qualitative flame shape information was also obtained using laser-induced fluorescence excited from OH radicals and laser light scattering studies of aluminum oxide particle seeded combusting flows. The gaseous hydrogen/liquid oxygen propellant studies for the shear coaxial injector focused on breakup mechanisms associated with the liquid oxygen jet under sub-critical pressure conditions. Laser sheet illumination techniques were used to visualize the core region of the jet and a Phase Doppler Particle Analyzer was utilized for drop velocity, size and size distribution characterization. The results of these studies indicated that the shear coaxial geometry configuration was a relatively poor injector in terms of mixing. The oxygen core was observed to extend well downstream of the injector and a significant fraction of the mixing occurred in the near nozzle region where measurements were not possible to obtain Detailed velocity and species measurements were obtained to allow CFD model validation and this set of benchmark data represents the most comprehensive data set available to date As an extension of the investigation, a series of gas/gas injector studies were conducted in support of the X-33 Reusable Launch Vehicle program. A Gas/Gas Injector Technology team was formed consisting of the Marshall Space Flight Center, the NASA Lewis Research Center, Rocketdyne and Penn State.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Bibliogov

Country of origin

United States

Release date

July 2013

Availability

Supplier out of stock. If you add this item to your wish list we will let you know when it becomes available.

First published

July 2013

Authors

Creators

Dimensions

246 x 189 x 7mm (L x W x T)

Format

Paperback - Trade

Pages

130

ISBN-13

978-1-289-15873-6

Barcode

9781289158736

Categories

LSN

1-289-15873-8



Trending On Loot