Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy (Paperback, Softcover reprint of the original 1st ed. 1995)


The theoretical chemist is accustomed to judging the success of a theoretical prediction according to how well it agrees with an experimental measurement. Since the object of theory is the prediction of the results of experiment, that would appear to be an entirely satisfactory state ofaffairs. However, ifit is true that "the underlying physicallaws ...for the whole ofchemistryare ...completely known" (1), thenit shouldbepossible,atleastinprinciple, topredict theresults of experiment moreaccurately than they canbe measured. Ifthe theoreticalchemist could obtain exact solutions ofthe Schrodinger equation for many-body systems, then the experimental chemist would soon become accustomed to judging the success ofan experimental measurement by how well it agrees with a theoretical prediction. In fact, it is now possible to obtainexact solutions ofthe Schrodinger equation for systems ofa few electrons(2-8). These systems include the molecular ion Ht, the molecule H , the reaction intermediate H-H-H, the unstable pair H-He, the 2 stable dimer He2' and the trimer He3. The quantum Monte Carlo method used in solving the time-independent Schrodinger equation for these systems is exact in that it requires no physical or mathematical assumptions beyond those of the Schrodinger equation. As in most Monte Carlo methods there is a statistical or sampling error which is readily estimated.

R3,525

Or split into 4x interest-free payments of 25% on orders over R50
Learn more

Discovery Miles35250
Mobicred@R330pm x 12* Mobicred Info
Free Delivery
Delivery AdviceShips in 10 - 15 working days


Toggle WishListAdd to wish list
Review this Item

Product Description

The theoretical chemist is accustomed to judging the success of a theoretical prediction according to how well it agrees with an experimental measurement. Since the object of theory is the prediction of the results of experiment, that would appear to be an entirely satisfactory state ofaffairs. However, ifit is true that "the underlying physicallaws ...for the whole ofchemistryare ...completely known" (1), thenit shouldbepossible,atleastinprinciple, topredict theresults of experiment moreaccurately than they canbe measured. Ifthe theoreticalchemist could obtain exact solutions ofthe Schrodinger equation for many-body systems, then the experimental chemist would soon become accustomed to judging the success ofan experimental measurement by how well it agrees with a theoretical prediction. In fact, it is now possible to obtainexact solutions ofthe Schrodinger equation for systems ofa few electrons(2-8). These systems include the molecular ion Ht, the molecule H , the reaction intermediate H-H-H, the unstable pair H-He, the 2 stable dimer He2' and the trimer He3. The quantum Monte Carlo method used in solving the time-independent Schrodinger equation for these systems is exact in that it requires no physical or mathematical assumptions beyond those of the Schrodinger equation. As in most Monte Carlo methods there is a statistical or sampling error which is readily estimated.

Customer Reviews

No reviews or ratings yet - be the first to create one!

Product Details

General

Imprint

Springer

Country of origin

Netherlands

Series

Understanding Chemical Reactivity, 13

Release date

October 2012

Availability

Expected to ship within 10 - 15 working days

First published

1995

Editors

Dimensions

240 x 160 x 24mm (L x W x T)

Format

Paperback

Pages

449

Edition

Softcover reprint of the original 1st ed. 1995

ISBN-13

978-9401040877

Barcode

9789401040877

Categories

LSN

9401040877



Trending On Loot